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Laser drilling cooling holes into turbine components is well established in industries. However, 
there are drawbacks related to setting and maintaining the appropriate manufacturing conditions, 
which can be formulated as an inverse problem. The inverse solution of a physical model describing 
long-pulse laser drilling of sheet metal is learned through an artificial algorithm. The trained feed-
forward neural network predicts process parameters of desirable production outcomes. Here, the 
trained network predicts beam radius and pulse power to drill through getting a hole with specified 
conicity. The hyperparameters of the neural network are trained using algorithmic differentiation. 
Using a physical model improves the solvability of the inverse problem, since all trials during training 
belong to the applicable range of laser drilling and improves the training procedure going in a 
physically informed direction. 
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1. Introduction
Nowadays, laser beam ablation is a preferred

manufacturing procedure for drilling holes in an extensive 
range of diameters, from one micrometer to several 
millimeters, without any physical contact. This ablation 
process is operated in various manufacturing applications, 
such as drilling filters, turbine-blade, or injection nozzles. 
The dominant physical phenomena mainly depend on laser 
radiation’s intensity and pulse duration. Considering the 
physical phenomena during the laser pulse, the laser-
material interaction is categorized as cold ablation (fs-
pulses, 1016 to 1022 Wcm−2), hot ablation (ps-pulses, 1015 
Wcm−2, and melt expulsion (ns∼ 𝜇𝜇s-pulses, 109 to 1011 
Wcm−2) [1]. Hence, the mathematical models should 
describe the propagation and absorption of laser radiation 
leading to ionization, evaporation, melting, and heating. 
However, assuming all or even most of the mentioned 
phenomena conduct to nonlinear, time-dependent, and 
complex equations that are computationally expensive. 

To improve solvability, phenomenological model 
reduction is applied successfully for different drilling 
regimes. Furmanski et al. [2] used this technique to model 
the laser manufacturing process to optimize an equation 
describing the ultrashort pulse laser ablation. In another 
investigation, this method was enforced to designate an 
asymptotic model for laser drilling [3]. The asymptotic 
model is based on the observation that after a certain 
number of pulses, the bore wall has become so steep that, 
although it is illuminated by the laser radiation, it hits too 
large an area and the material can no longer be removed. 
The model is a forward solution for the laser drilling 
process, which accurately calculates the drill-hole shape. 
However, the inverse answer to this process is even more 
helpful from the manufacturing point of view since, in an 
existing production process, the manufacturers pursue a 
particular process’s parameters for constructing a specific 
hole shape. 

In general, inverse problems are hard to solve and often 
ill-posed. Artificial Intelligence (AI) is becoming a 
versatile tool to solve them. For modeling and solving 
inverse problems, artificial Neural Networks (ANNs) with 
suitable function approximation properties are given [4, 5]. 
These studies demonstrate tremendous potential for 
combining existing physical knowledge in the form of 
governing equations with the data-driven approach of 
ANNs. These prototypes not only solve the inverse 
problems but can also replace expensive computational 
simulations with faster models. Such models unleash the 
true potential of AI approaches by incorporating physics-
based equations into a guided learning process. 

In terms of abilities of ANNs, they are introduced in 
various fields, from medical [6, 7] and ecological studies 
[8] to different engineering applications like estimating
elastic settlements of shallow foundations [9], prediction
of combustion profile [10], speed control of the alternating
current (AC) induction motor drive [11], and laser
manufacturing processes (cutting [12], welding [13, 14,
15], engraving [16, 17], and additive manufacturing [18,
19, 20] ). To optimize forming quality and reducing
computational cost of modeling the Selective Laser
Melting (SLM) process, the ANN is developed which
predicts accurately the density of metal specimens in high-
efficiency molding and helps in analyzing the uncertainty
and sensitivity [21] [22]. Additionally, several studies
have been conducted on the use of ANNs in the laser
drilling process. For instance, a feed-forward neural
network was established to optimize the parameters of
laser drilling machining and produce optimum grooves in
die-Steel [23, 24]. Another analysis worked on the
prediction of the performance measures (circularity at
entry and exit, taper, spatter area, and kerf geometry) and
studied its variations under the extended range of laser
drilling parameters [25, 26, 27]. To obtain an effective
parameter optimization strategy for fabricating the silica
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glass microchannels with a femtosecond laser, an ANN is 
established; it effectively and swiftly predicts the depth of 
tapered microchannels. This approach addresses the 
intricate nonlinear connection between laser processing 
parameters and machining outcomes, offering a practical 
means to forecast microchannel depths [28]. In addition, 
ANNs as surrogate model in simulating nanosecond laser 
percussion drilling of for Through-Silicon Vias (TSV), 
leades to the identification of an optimized processing 
region with specific energy and pulse parameters for 
excellent TSV results [29].  

In the quoted analyses, the ANNs are used to solve the 
laser drilling problem forwardly. Conversely, in the 
current investigation, the ANN is employed to learn an 
approximation to the inverse solution; it is suggested to 
switch the inputs and outputs and predict the required 
process parameters for desirable production outcomes. 
Herein, the inputs are the top and bottom widths of a 
predefined borehole describing conicity, and outputs will 
be the laser pulse power and the beam radius. The 
backbone of this approach is a pre-validated 
phenomenological model combined with the ANN to gain 
the inverse solution. This approach represents a 
customized cost function that contains the ODE of the 
physical model; in fact, the ODE provides the physical-
mathematical relations among variables during the 
backpropagation. The cost function is minimized w.r.t. the 
weights and biases of the ANN by adaptive moment 
estimation algorithm (Adam) [30] which is a first-order 
gradient-based optimization method. To establish the 
expressed method, firstly, a database is generated through 
the asymptotic drill model (developed by [3]). Then, this 
dataset is used to train and optimize the ANN, and finally, 
the ANN-model’s performance is tested by an unseen 
dataset. During the training phase, the gradient of the ODE 
is required; in this study, the algorithmic differentiation 
(AD) technique is employed, which is an automatic 
method for computing gradients of numerical algorithms 
[31]. 

The following approach is structured as follows. The 
succeeding main section explains the long-pulse laser 
drilling model and its range of applicability. Section 3 then 
introduces the differential programming technique and 
explains the methodology. Section 4 demonstrates the 
operation of learning inverse solutions and closes with 
accomplished experimentation. Finally, Section 5 
concludes the outcomes. 

2. Physical modeling
2.1. The long-pulse laser drilling model

Hermanns’s [3] model describes the relation between 
absorbed power intensity and the shape of the drilled hole 
of the long-pulse laser drilling process. Since the pulse 
duration of long laser pulses is a few orders of magnitude 
larger than the electron-phonon scattering time, melting is 
the dominant thermal process during the ablation. Based 
on this phenomenological fact, the material is ablated 
when it absorbs a specific amount of power called ablation 
intensity-threshold (𝐼𝐼thr). This threshold value is calibrated 
experimentally using one single borehole diameter and a 
distributed intensity 𝐼𝐼(𝑥𝑥, 𝑧𝑧)  measurement. During 

calibration, the ablation threshold (𝐼𝐼thr) is determined to 
give the diameter of the borehole as manufactured. By this 
asymptotic time-independent model, one can sum up the 
effects of complicated phenomena during the laser drilling 
process (i.e., ionization, evaporation, melting, melt flow, 
and condensation) in the threshold value. As a result, the 
absorption coefficient 𝐴𝐴(cos(𝜃𝜃inc)), the projection factor 
cos(𝜃𝜃inc) and the threshold intensity are the phenomena 
governing and the asymptotic shape of the drill wall: 

𝐴𝐴�cos(𝜃𝜃inc)�cos(𝜃𝜃inc)𝐼𝐼(𝑥𝑥, 𝑧𝑧) = 𝐼𝐼thr.  (1) 

𝑧𝑧l(𝑥𝑥) and 𝑧𝑧r(𝑥𝑥) are defined as the z-coordinate of bore-
hole’s wall at left and right side of the borehole. Utilizing 
the ablation intensity-threshold criterion, the asymptotic 
laser drilling model assesses the slope of the right and left 
sides of the drilled hole as: 

𝑑𝑑𝑧𝑧r,l
𝑑𝑑𝑑𝑑

= ±��𝐴𝐴�cos(𝜃𝜃inc)�𝐼𝐼(𝑑𝑑,𝑧𝑧r,l)
𝐼𝐼thr

�
2
− 1.  (2) 

Investigations of [3] presented an adequate agreement 
between phenomenological eq. (2) and experimental 
results. 

At the top surface (𝑥𝑥, 𝑧𝑧 = 0), the laser beam radiates at 
a large value for the projection factor cos(𝜃𝜃inc), and the 
ablation occurs as the projected intensity of absorbed 
energy reaches the ablation threshold of the material. 
Hence, the right (𝑥𝑥𝑟𝑟 , 0) and the left (𝑥𝑥𝑙𝑙, 0) bounds of the 
ablated area (i.e., (𝑥𝑥(r,l),0, 0)  ) are estimated by 
𝐼𝐼eff(𝑥𝑥(r,l),0, 0) = 𝐼𝐼thr. For a specific depth of the hole (i.e., 
𝛥𝛥𝑧𝑧), the next x-coordinate of the wall is calculated as: 

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 + �𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑
�
−1
𝛥𝛥𝑧𝑧.  (3) 

As represented in eq. (2), the slope of the wall of 
borehole is proportional to the ratio of absorbed intensity 
and material threshold intensity. The beam incident angle 
𝜃𝜃inc is obtained from inner product of the surface normal 
and Poynting vectors of the beam, as shown in Fig. 1. 
Consider a differential triangular element near the incident 
point of the beam and left side of the hole. The inclination 
𝑑𝑑𝑧𝑧/𝑑𝑑𝑥𝑥 of the left drilled wall is given by: 

tan(𝜃𝜃l) = 𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

, 𝑥𝑥 < 0  (4) 

where the inclination angle 𝜃𝜃l is: 

𝜃𝜃l = 𝜃𝜃zl + 𝜃𝜃inc.  (5) 

Within the Rayleigh length of the laser beam the angle 
𝜃𝜃zl between beam axis 𝑥𝑥 = 0 and Poynting vector remains 
negligible small. If 𝜃𝜃zl  remains smaller than 2.5̊the 
inclination angle 𝜃𝜃l is set equal to the incident angle 𝜃𝜃inc. 
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Fig. 1 Geometric relations related Poynting vector and 
normal vector at the drilled wall. 

 Gaussian distribution is supposed for the focused laser 
beam intensity 𝐼𝐼(𝑥𝑥, 𝑧𝑧): 

𝐼𝐼(𝑥𝑥, 𝑧𝑧) = 𝐼𝐼0 �
𝑤𝑤0
𝑤𝑤(𝑧𝑧)

�
2
𝑒𝑒�−2�

𝑥𝑥
𝑤𝑤(𝑧𝑧)�

2
� ,  (6) 

where beam radius is: 

𝑤𝑤(𝑧𝑧) = 𝑤𝑤0�1 + � 𝑧𝑧
𝑧𝑧𝑅𝑅
�
2

 (7) 

The maximum intensity 𝐼𝐼0, is related to the laser pulse 
power 𝑃𝑃𝑙𝑙, beam waist 𝜔𝜔0, pulse duration 𝜏𝜏 and repetition 
rate 𝜈𝜈𝑟𝑟𝑟𝑟𝑟𝑟  as   𝐼𝐼0 = 2𝑃𝑃𝑙𝑙/(𝜋𝜋𝑤𝑤02. 𝜏𝜏. 𝜈𝜈𝑟𝑟𝑟𝑟𝑟𝑟). The spatial shape 
of the beam is characterized by the focal number 𝐹𝐹 , 
Rayleigh length 𝑧𝑧𝑅𝑅  and the beam quality 𝐾𝐾 , which are 
given by: 

𝐹𝐹 = 𝑓𝑓
𝐷𝐷

,

𝑧𝑧𝑅𝑅 = 𝜆𝜆
𝜋𝜋
𝐹𝐹2

𝐾𝐾
,

𝐾𝐾 = 𝜆𝜆
𝜋𝜋

1
𝜃𝜃0𝑤𝑤0

, 0 < 𝐾𝐾 < 1.

  (8) 

Here, 𝐷𝐷  is the illuminated radius of the focusing lens 
with focal length 𝑓𝑓 and, 𝜃𝜃0 = 𝑤𝑤0/𝑧𝑧𝑅𝑅  and 𝑤𝑤0 are the far-
field divergence angle and the focal radius, respectively. 

In the limit of metallic optical properties, where the 
index of refraction 𝑛𝑛 and absorption 𝜅𝜅 are equal and large 
compared to unity (𝑛𝑛 = 𝜅𝜅 >> 1) the dielectric function 
𝜖𝜖 = 𝑛𝑛2 − 𝜅𝜅2  tends to zero. Consequently, displacement 
currents become negligible. The conductive currents 
𝜎𝜎/(𝜖𝜖0𝜔𝜔) = 2𝑛𝑛𝜅𝜅  describe the metallic behavior. As 
consequence, the Fresnel formulae yield the degree of 
absorption 𝐴𝐴𝑠𝑠 and 𝐴𝐴𝑟𝑟 for s- and p-polarized light: 

𝐴𝐴𝑠𝑠(𝜇𝜇) = 4𝜄𝜄𝜄𝜄
2+2𝜄𝜄𝜄𝜄+𝜄𝜄2𝜄𝜄2

 ,  (9) 

𝐴𝐴𝑟𝑟(𝜇𝜇) = 4𝜄𝜄𝜄𝜄
2𝜄𝜄2+2𝜄𝜄𝜄𝜄+𝜄𝜄2

.   (10) 

Here, 𝜄𝜄 = �1/𝑛𝑛𝑛𝑛  and 𝜇𝜇 = cos(𝜃𝜃inc)  are the material 
parameter and the projection factor , respectively. In the 
present study, a laser beam with a wavelength of 1.068 µm 
is radiated on AISI 304 stainless steel; thus 𝜄𝜄 equals 0.25. 
For non-polarized radiations, the total absorption 
coefficient is calculated by assuming equal portions for 
perpendicular and parallel beams, as below: 

𝐴𝐴(𝜇𝜇) = 0.5𝐴𝐴𝑠𝑠(𝜇𝜇) + 0.5𝐴𝐴𝑟𝑟(𝜇𝜇).   (11) 

Comparing 𝐴𝐴(𝜇𝜇)  and 𝜇𝜇 × 𝐴𝐴(𝜇𝜇)  as functions with 
respect to 𝜇𝜇 , it is observed that 𝜇𝜇 × 𝐴𝐴(𝜇𝜇)  could be 
estimated by a linear relation with a constant slope 𝐺𝐺 (see 
Fig.  2). Therefore, eq. (1) is simplified, as: 

𝐺𝐺 × cos(𝜃𝜃inc) × 𝐼𝐼 = 𝐼𝐼thr.   (12) 

Fig.  2 Variation of absorption coefficient of AISI 304 
stainless steel w.r.t. cosine of incident. 

By defining the 𝐼𝐼thr = 𝐼𝐼thr/𝐺𝐺, eq. (1) reads: 

cos(𝜃𝜃inc) = 𝐼𝐼thr
𝐼𝐼

.   ( 13) 

Finally, the first-order differential equation (i.e., eq. (2) 
is solved for 𝑧𝑧 of the left and right side of the borehole, 
and consequently, the x- and z-coordinate of the drilled 
wall is achieved. This approach is the asymptotic model 
for the long-pulse laser drilling process. 

2.2. Range of applicability 
Each model performs for certain ranges of inputs. These 

adequate and usable sets of input process parameters 
restrict the applicable region. Some input parameters are 
forceful in the physical phenomenon and play more 
influential parts than others. Hence, rather than analyzing 
the model’s performance under the effect of all inputs, 
only the dominant ones are varied, and the rest are kept 
constant. In this study, constant process parameters are 
called environment variables, and the varying ones are 
named features (here, the laser beam radius and pulse 
power), as detailed in Table 1. 

Table 1 Process parameters before specifying applicable 
range of drilling through AISI 304 stainless steel. 

process parameter symbol value 
thickness H 3 mm 
beam waist 𝜔𝜔0 0.01 - 0.2 

mm 
pulse power  𝑃𝑃𝑙𝑙 10-500 W
focal position 𝑧𝑧0 0 mm
pulse duration 𝜏𝜏 0.5 ms
repetition rate 𝜈𝜈𝑟𝑟𝑟𝑟𝑟𝑟 50 Hz
wavelength 𝜆𝜆 1068 nm
beam quality factor 𝐾𝐾 1

The applicable range is defined based on features’ 
combinations that lead to a drilled through-hole. The 
initial and applicable ranges of parameters are illustrated 
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in the  Fig. 3. Here, laser beam waist’s and pulse power’s 
ranges of [10 - 200 µm]×[130 - 500 W] lead to through-
holes with diameters 33 to 580 µm. Here, the initial data 
set contains 10000 samples in the mentioned ranges. 

Fig. 3 Initial and applicable ranges of laser beam waist and 
pulse power. Other process parameters have constant 
values as tabulated in Table 1. 

After extracting the applicable range of process 
parameters, the introduced asymptotic drill model is 
executed to generate the training dataset. After applying 
the applicable ranges of process parameter, the training 
dataset contains 5600 cases. Additionally, an unseen 
dataset is rendered to evaluate and test the final trained 
ANN. 

3. Differential programming
3.1. Customized ANN

An ANN is a supervised knowledge processing 
algorithm founded on the structure of biological neural 
networks. Its architecture is constructed of nodes and 
layers whose suitable combination is different for each 
problem. The first and last layers are input and output, the 
rest are called hidden layers. Inside the ANN, information 
is processed in nodes with specific weights, and a 
threshold value dubbed bias is added to each hidden layer. 
Thus, when dealing with ANNs, optimizing 
hyperparameters is vital. Restrictions which dictated by 
activation functions rule fired signals of nodes. Indeed, 
ANNs work only like simple linear regression without 
activation functions; thus, nonlinear activation functions 
are imposed on the network to enhance performance. 
Routine activation functions are binary step, Sigmoid, or 
rectified linear unit functions. The optimum values of 
weights are determined via the iterative training steps, so-
called backpropagation; it is established on the 
mathematical chain rule, which aims to minimize training 
loss. The ANN’s performance is assessed with unseen data 
by completing the optimal weight and bias values. 

In the current study, a customized architecture for ANN 
is developed to profit from the benefits of a pre-validated 
ODE besides the capabilities of deep neural networks. In 
Fig. 4 the configuration of our customized ANN and 
dataflow are displayed, where 𝑑𝑑𝑖𝑖/𝑜𝑜𝑡𝑡  and 𝑑𝑑𝑖𝑖/𝑜𝑜

𝑟𝑟  represent the
target and predicted diameters (input/output) of drill-hole, 
respectively. 𝑃𝑃1,2 and 𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒 stand for varying and constant 
parameters of ODE. In current study 𝑃𝑃1,2 represents pulse 

power and beam waist and 𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒  is constant parameters. 
The ODE solver is embedded into the learning algorithm’s 
architecture; in this way, the network learns to predict 
quantities constrained by a physical model represented by 
the ODE solver. In contrast to a standard ANN model, 
herein, the input layer contains the target value i.e., drill 
hole geometry. Network’s last layer passes the required 
process parameters. In training stage, the ANN is 
optimized to replicate the target values by minimizing the 
loss function. 

Fig. 4 Structure of present deep neural network and its 
data-flow. For laser drilling model.  

The Learning algorithm includes the loss function and 
optimization benchmark. Assume that mean-square error 
(MSE) is the loss function: 

𝑙𝑙 = 1
𝑁𝑁
∑ (𝑁𝑁
𝑖𝑖=1 𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖

𝑟𝑟)2,   (14) 

where 

𝑦𝑦𝑖𝑖
𝑟𝑟 = 𝑂𝑂𝐷𝐷𝑂𝑂(𝑃𝑃1,2(𝑤𝑤,𝑏𝑏),𝑃𝑃𝑟𝑟𝑒𝑒𝑒𝑒).   (15) 

Here, N, 𝑦𝑦𝑖𝑖
𝑡𝑡,𝑟𝑟, w, and b are batch size, target/predicted

values, network’s weight, and bias, respectively. To 
minimize the loss function, its derivatives w.r.t weights 
and biases are required, i.e., 𝑑𝑑𝑙𝑙/𝑑𝑑𝑤𝑤 and 𝑑𝑑𝑙𝑙/𝑑𝑑𝑏𝑏. Based on 
chain rule of calculus, the derivatives read: 

𝑑𝑑𝑙𝑙
𝑑𝑑𝑤𝑤

= −2
𝑁𝑁
∑ 𝑑𝑑𝑦𝑦𝑖𝑖

𝑝𝑝

𝑑𝑑𝑤𝑤
𝑁𝑁
𝑖𝑖=1 (𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖

𝑟𝑟),   ( 16) 
𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑

= −2
𝑁𝑁
∑ 𝑑𝑑𝑦𝑦𝑖𝑖

𝑝𝑝

𝑑𝑑𝑑𝑑
𝑁𝑁
𝑖𝑖=1 �𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖

𝑟𝑟�.   ( 17) 

Generally, in training ANNs, the gradient of the loss 
function is calculable effortlessly. However, as seen in eq. 
16 and eq.17, by entrenching the ODE solver into the 
network, derivatives of the ODE solver are also required. 
Fortunately, algorithmic differentiation (AD) can ease this 
issue which is based on tracing the evaluations. In the 
opposite of symbolic differentiation, it can differentiate 
the algorithms which contain loops, recursion, and 
procedure calls. Indeed, it can aid in evaluating the 
gradient of numeric algorithms and numerical expressions 
by exploiting the chain rule of differential calculus. 

The AD technique has two modes, i.e., forward and 
inverse. In the forward mode, the actual values of 
dependent variables are computed, and simultaneously, 
their derivatives are evaluated by involving the chain rule 
in each elementary operation. Nevertheless, when the 
number of independent variables is higher than the 
dependent ones, the forward AD does not perform 
efficiently, and inverse AD is advised [31]. This mode is 
assembled of the forward and backward phases; in the 
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former stage, the original function code is executed 
entirely, and the intermediate variables and dependencies 
are recorded; afterward, in the later phase, the derivatives 
are computed by establishing the adjoints of intermediates 
variables from outputs to inputs. Recently, few studies 
have engaged the AD technique in training neural 
networks, and numerical modeling [32, 33]. In the present 
analysis, an ANN model is built through TensorFlow [34] 
which is a well-known open-source machine learning 
platform. This platform benefits from the inverse AD for 
training ANNs which can compute the gradients of 
differentiable expressions. 

3.2. Training optimization 
In terms of the optimization strategy, gradient-based 

techniques like stochastic gradient descent (SGD) and 
adaptive moment (Adam) serve efficiently in training 
ANNs. They track the gradient of the entire training set 
downhill until it reaches the minimum. The weights and 
biases are corrected in each epoch, and a parameter called 
learning rate (𝛼𝛼) manages the optimization procedure: 

𝑤𝑤𝑒𝑒+1 ← 𝑤𝑤𝑒𝑒 − 𝛼𝛼 𝑑𝑑𝑙𝑙
𝑑𝑑𝑤𝑤

,   ( 18) 

𝑏𝑏𝑒𝑒+1 ← 𝑏𝑏𝑒𝑒 − 𝛼𝛼 𝑑𝑑𝑙𝑙
𝑑𝑑𝑑𝑑

.   ( 19) 

The learning rate sensitizes this iterative procedure 
proceeds in epochs and the rate of descent. The SGD 
method is efficacious, but its sensitivity to learning rate is 
high, and when the training dataset is immense, it acts 
slowly, and the outcomes are noisy. Hence, the momentum 
method (Adam) is favored because it directs faster the 
gradient downturn in the relevant direction and lessens 
oscillations. 

3.3. Training statistics 
To figure out the distribution of the errors of outputs at 

the end of each experiment, the histograms of the mean 
relative errors (MRE) are assessed. The percentage of 
MRE is computed as: 

𝑀𝑀𝑀𝑀𝑂𝑂 =  1
𝑁𝑁

 ∑ �𝑦𝑦𝑖𝑖
𝑡𝑡−𝑦𝑦𝑖𝑖

𝑝𝑝

𝑦𝑦𝑖𝑖
𝑡𝑡 � × 100𝑁𝑁

𝑖𝑖=1 .  ( 20) 

In this way, the output’s MRE is classified in error bins 
to facilitate the analyzing of predictions’ quality. 

4. Learning the inverse solution
The impacts of activation function, learning rate, batch

size, and hyper-parameters on the model’s performance 
are examined for learning the inverse solution. For 
simplicity, the network is anointed by the number of its 
nodes and layers; for instance, [3×6] gives a network with 
six hidden layers, and each layer has three nodes. A dense 
training dataset is extracted from applicable range (see 
2.2) with training samples. 

4.1. Numerical experiments 
The behavior of three activation functions, Sigmoid 

(nonlinear) and ReLU and lReLU (piece-wise linear), are 
scanned. The mean absolute errors of training, MAE, are 

shown in Fig. 5. Network with Sigmoid function 
approximates MAE 100 µm while one with ReLU or 
lReLU makes prognoses with less than 10 µm for 
predicting target holes 150-600 µm. 

Sigmoid function is insensitivity to input values larger 
than 0.7 that conducts near-zero derivatives for these 
values. Although this behavior is a robust tool for 
classifying problems, it is a burden when it comes to 
regression. Further, the deep neural networks with the 
Sigmoid function suffer from vanishing gradients; the 
network’s parameters do not get revised due to the 
insignificance of variation of cost function gradients. 
ReLU and lReLU functions do not struggle with this effect 
and respond precisely to large inputs. 

Fig. 5 Training MAE for different activation functions. 
[3×18] network, batch size = 128, learning rate = 0.01. 

Histograms of MRE of ReLU and lReLU illustrate that 
more than 95% and around 80% of predictions manipulate 
errors less than 10%, as shown in Fig. 6. Hence, ReLU is 
picked as the preferred activation function for this problem. 

Fig. 6 Histogram of prediction relative error for different 
activation functions. [3×18] network, batch size = 128, 
learning rate = 0.01. 

Learning rate controls the speed of optimization 
procedure. A high learning rate leads to significant 
changes in weights. On the one hand, these considerable 
evolutions can accelerate optimization. On the other hand, 
it can move away the training rapidly. A low learning rate 
provides a slow optimization pace such that the training 
can never converge to the optimum state. 

This study uses an exponential decay function, gradually 
decreasing the learning rate. In this way, the network 
profits from a fast-learning rate at the beginning, and then 
it plunges exponentially to avoid overshooting. The 
network is examined with four initial learning rates: 10−1, 
10−2, 10−3, and 10−4. As MAEs of training plotted at Fig. 7, 
with extreme learning rates (i.e., 10−1 and 10−4), the 
network does not learn due to overshooting and prolonged 
rate of learning, respectively. Trainings with initial 
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learning rates 10−2 and 10−3 conducts to MAE less than 10 
µm. 

Fig. 7 Training mean absolute error for different initial 
learning rates. [3×18] network, batch size = 128, 
activation functions = ReLU. 

As pictured in Fig. 8, initial learning rate 10−3 culminates 
MRE about 8% and 80% of predictions have relative error 
less than 10%. The results are enhanced enormously when 
the initial rate is increased one order of magnitude to 10−2; 
more than 97% of outcomes have relative error less than 
10%. 

Fig. 8 Histogram of prediction error for different initial 
learning rate. [3×18] network, batch size = 128, activation 
functions = ReLU. 

The optimization approaches that process the entire 
samples simultaneously, so-called the deterministic 
gradient methods, rise the training time significantly and 
require high computational memory. By dividing the 
dataset into small clusters (called the minibatch stochastic 
method), the learning procedure benefits from its 
regularizing effect, which induces noise. If an individual 
sample is used at a time (stochastic gradient method), 
generalization error is presumably the best, but in this case, 
a small learning rate is required to grab sustainable results 
[35]; it can slow down training advancement. Thus, it is 
crucial to find the smallest efficient batch size. As 
displayed in Fig. 9, the MAEs of training operations with 
very small batch sizes, i.e., 8 and 16, fluctuate intensively 
without noticeable improvement. By increasing the batch 
size, the amplitudes of instabilities reduce prominently, 
and the MAE represents a stable tendency. 

Fig. 9 Training mean absolute error for different sizes of 
minibatch. [3 × 18] network, learning rate = 0.01, 
activation functions = ReLU. 

The MREs of prognoses are plotted in Fig.  10; they 
express that less oscillating training procedures can reduce 
the prediction’s error to 3%. Here, since the MRE of 128-
sample batches is small enough, i.e., 2.9%, 128-sample 
batch is selected to avoid an unnecessary increase in 
training time. 

Fig.  10 Histogram of prediction error for different sizes 
of minibatch. [3 × 18] network, learning rate = 0.01, 
activation functions = ReLU. 

The ANNs are found on a chain-based configuration 
such that each layer is a function of the previous layer. 
There is no fixed formula to calculate the proper number 
of layers and nodes; they are determined in a trial-error 
procedure. In this study, a uniform architecture for hidden 
layers is assigned; all of them have the same number of 
neurons. The optimum structure is obtained by deepening 
and widening the network and monitoring the average 
prediction error. The MAE of training is depicted in Fig. 
11; in this graph, the width of the network remains 
constant. By increasing the depth of the network from 2 to 
16 layers, the prediction accuracy is improved 
significantly. MAE of training by a 16-layer network 
decreases to 5.9 µm. By adding more layers, the training 
error augments gradually to 11 µm for the 24-layer 
network. A drastic jump is observed in training error when 
the network is deepened more, meaning the gradient 
vanishes and the network cannot learn anymore. 
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Fig. 11 Training mean absolute error for different numbers 
of hidden layer. learning rate = 0.01, activation functions 
= ReLU, batch size = 128. 

Furthermore, Fig.  12 demonstrates that for a 16-layer 
network, more than 97% of predictions have relative errors 
less than 10%, and its average relative error is about 2%. 
It is glimpsed that the MRE is increased gradually by 
stacking layers. It can be concluded that a 16-layer 
network is adequately deep to accomplish accurate outputs 
if benefiting the nonlinear behavior of the network. 

Fig.  12 Histogram of prediction error for different 
numbers of hidden layer. learning rate = 0.01, activation 
functions = ReLU, batch size = 128. 

Concerning studying the effect of widening of the 
network, nodes are increased from 3 to 15 while the 
network’s depth is constant. By augmenting the width, the 
minimum MAE of training growths broadly from 8 µm for 
3-node network to 49 µm for 15-node, as depicted in Fig.
13. The adverse impact of increasing the network width is
also understandable from analyses of relative error. As
illustrated in the histogram in Fig. 13, with a 3-node
architecture, more than 97% of prognoses have relative
errors less than 10%; this value declines to 30% for the 15-
node network. One reason for this inaccuracy relates to the 
learning rate; widened network needs a lower learning rate. 
As discussed before, the lower the learning rate is, the
slower the training procedure is, or even it is not feasible.
It is worth noticing that although the performances of a
[3×2] and [5×2] network are almost the same, they differ
remarkably when the network deepens to 16 hidden layers, 
as shown in Fig. 14. Therefore, and [3×16] network is
selected as the final structure.

Fig. 13 (top) Training mean absolute error, (down) 
histogram of prediction error for different number of 
nodes. hidden layers = 2, learning rate = 0.01, activation 
functions = ReLU, batch size = 128. 

Fig. 14 Training mean absolute error for different number 
of nodes. learning rate = 0.01, activation functions = ReLU, 
batch size = 128. 

4.2. Discussion 
According to the above examinations, a [3×16] feed-

forward-back-propagation network is practical to solve the 
laser drilling problem inversely. The performance of the 
trained network in exposing unseen dataset is depicted in 
Fig. 15 and Fig. 16 . The unseen dataset is defined once 
inside the training’s parameter range (“unseen”) and once 
outside it (“unseen_ext”) to test the network with the 
extended dataset. Here, training, unseen and unseen_ext 
datasets contain 5600, 121, 25 samples.  

The evaluations indicate that the model can anticipate 
about 85% of the unseen dataset with relative errors less 
than 10% and MRE equals 4.6%. Nonetheless, the 
network functions less efficiently with unseen_ext 
datasets such that around 65% of predictions are precise 
and MRE is about 9.5%. 
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Fig. 15 Performance of model in predicting targets, top 
and bottom widths. The model is tested with training-, 
unseen- and unseen_ext-data. 

Fig. 16 Histograms of prediction errors of (up) top and 
(down) bottom widths for training samples, unseen and 
unseen_ext dataset. 

In Table 2 results of the model for five examples of laser 
drilling are proposed. The required beam radii (brp) and 
pulse powers (ppp ) are predicted for drilling boreholes 
with preferred top and bottom widths, 𝑤𝑤t

t  and 𝑤𝑤b
t  

respectively. To check deviation of the predictive and 
asymptotic models, the top and bottom widths (i.e. 𝑤𝑤t

s and 
𝑤𝑤b

s) of the borehole are also simulated with the anticipated 
brp  and ppp  as tabulated in Table 3. The average 
difference between the results of predictive and simulating 
models is about 5 to 8 µm. 

Table 2 Evaluating the model with unseen dataset. 

𝑤𝑤t
t(𝜇𝜇𝜇𝜇) 𝑤𝑤𝑑𝑑t (𝜇𝜇𝜇𝜇) brp(𝜇𝜇𝜇𝜇) ppp(𝑊𝑊) 

35 30 14.1 59.8 

90 70 29.1 91.6 

140 100 45.5 126.4 

260 195 90.6 221.9 

310 200 100.8 243.6 
450 320 155.6 359.9 

Table 3 Evaluating the model with unseen dataset. 
brp(𝜇𝜇𝜇𝜇) ppp(𝑊𝑊) 𝑤𝑤t

s(𝜇𝜇𝜇𝜇) 𝑤𝑤b
s(𝜇𝜇𝜇𝜇) 

14.1 59.8 44.6 38.4 

29.1 91.6 87.5 69.3 

45.5 126.4 134.1 100.1 

90.6 221.9 263.6 190.8 

100.8 243.6 292.8 212.4 

155.6 359.9 448.3 325.5 

More precisely, the claimed range of 5 to 8 µm represents 
an average Absolute Error between target and predicted 
values.  In Table 4 and 5, the target values and prediction 
results for top and bottom width of borehole are shown. 
The difference between predicted and target values varies 
between 0.1 to 17.2 µm. By calculating the mean absolute 
errors, we obtain 6,75 and 5,22 μm for top and bottom 
widths, respectively.  

Table 4 Evaluating the model with unseen dataset. 

𝑤𝑤t
t(𝜇𝜇𝜇𝜇) 𝑤𝑤𝑡𝑡𝑠𝑠(𝜇𝜇𝜇𝜇) Absolute Error = �𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖

𝑟𝑟� 

35 44.6 9.60 
90 87.5 2.50 
140 134.1 5.90 
260 263.6 3.60 
310 292.8 17.20 
450 448.3 1.70 

Mean Absolute Err𝑜𝑜𝑜𝑜 =
1
𝑁𝑁 ��𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖

𝑟𝑟�
𝑁𝑁

𝑖𝑖=1

 6.75 

Table 5 Evaluating the model with unseen dataset. 

𝑤𝑤𝑑𝑑t (𝜇𝜇𝜇𝜇) 𝑤𝑤𝑑𝑑𝑠𝑠(𝜇𝜇𝜇𝜇) Absolute Error = �𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖
𝑟𝑟� 

30 38.4 8.40 
70 69.3 0.70 
100 100.1 0.10 
195 190.8 4.20 
200 212.4 12.40 
320 325.5 5.50 

Mean Absolute Err𝑜𝑜𝑜𝑜 =
1
𝑁𝑁 ��𝑦𝑦𝑖𝑖𝑡𝑡 − 𝑦𝑦𝑖𝑖

𝑟𝑟�
𝑁𝑁

𝑖𝑖=1

 5.22 

5. Conclusion
In this research on solving inverse problems, a neural

network is established and trained that determines the laser 
parameters with which the desired taper of a borehole is 
achieved. As result, using a physical model improves the 
solvability of the inverse problem, since all trials during 
training belong to the applicable range of laser drilling and 
improves the training procedure going in a physically 
informed direction. However, the network’s performance 
strongly depends on activation functions and structure of 
the ANN. Comparing Sigmoid, ReLU, and LReLU reveals 
that the ReLU function executes convincingly. 
Additionally, the hyper-parameter learning rate which 
controls the optimization speed has to be optimized, to 
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avoid prolonged learning steps by too low learning rates 
and avoid numerical overshooting by too high values. To 
relieve required computational memory and time, the 
training samples were separated into several mini-batches; 
outcomes reveal that small mini-batches lead to 
fluctuating training tendencies, albeit their regularization 
effect could improve general error. Furthermore, networks 
with small mini-batches require small learning rates to 
maintain sustainable results. Finally, the proper 
arrangement of layers and nodes was figured out. The 
trained neural network was tested with unseen data; where 
it completes accurately when the unseen data locates 
inside the training range, while the mean relative error of 
prediction increases extensively if unseen data are beyond 
this range.  
This work highlights the continuing need for research in 
the construction of neural networks for solving inverse 
tasks, which should increasingly use physically informed 
networks and require improved methods for generating 
suitable network structures.  
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