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This research introduces a novel paradigm by integrating physics-based models with neural networks, forming a

cohesive and adaptive framework for laser drilling. The Physics-Informed Neural Network (PINN) leverages the

underlying physical principles governing laser-material interactions to enhance the predictive accuracy of drilling

outcomes. Through meticulous training on diverse datasets encompassing material properties, laser parameters, and

resultant hole geometries, the PINN model exhibits a remarkable ability to generalize across varied conditions. Here,

theArtificial Neural Network’s (ANN) inputs are spatial and temporal coordinates inside the domain, on the boundaries

and at initial moment. The output is the shape of laser drilled hole. During the training step, the output values, and

their derivatives w.r.t. inputs are calculated and afterwards they are used to evaluate the loss value. Through the

gradient- based optimization method, the weights of network are changed to reach minimum loss value. The trained

model predicts the unknown coefficient in the physical governing equation, which here is ablation threshold intensity.

Our study investigates the effectiveness of the PINN approach in optimizing laser drilling parameters and achieving

superior accuracy. We demonstrate its robustness in predicting drilling outcomes for different laser configurations.

This research contributes not only to the advancement of laser precision microfabrication but also to the broader field

of computational physics. By seamlessly integrating data-driven approaches with fundamental physical insights, the

PINN methodology offers a transformative pathway to optimize laser drilling processes, paving the way for enhanced

efficiency and quality in microfabrication applications. The insights presented herein promise to shape the future of

laser microfabrication, fostering innovation and pushing the boundaries of precision engineering.
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1. Introduction

Laser drilling process involves complex physical interac-

tions, including thermal, mechanical, and optical phenomena,

often described by nonlinear partial differential equations

(PDEs). Traditional computational methods, while powerful,

can be computationally expensive or may struggle with the

multiscale and multiphysics aspects of laser processes [1, 2,

3].

Physics-Informed Neural Networks (PINNs) integrate

physical principles, typically in the form of differential equa-

tions, into the architecture or loss function of the artificial

neural network. This ensures that the solutions provided by

the network comply with the underlying physical laws gov-

erning the system.

It can be particularly advantageous in scenarios where data

is scarce or expensive to obtain, as the network can be trained

on a combination of sparse data and physical laws, reducing

the reliance on extensive datasets. It offers a promising al-

ternative by providing a framework to model these complex

interactions efficiently.

Very early research work on capabilities of PINNs was con-

ducted to solve Schrödinger equation and Allen–Cahn equa-

tion, and also to find unknown parameters in Navier–Stokes

equation and Korteweg–de Vries equation [4]. Later it is

employed to find unknown parameters in equations of linear

elastostatics [5]. Recently, it is used to approximate unknown

parameters of displacement in the elastic body with crack [6].

This model can enhance fatigue crack growth simulation and

life prediction of structures.

In terms of application of PINNs in Laser manufacturing

problems, a finite element model is combined with an Ar-

tificial Intelligence-powered PDE solver, PINNs, to speed

up simulating selective laser sintering process and also to

optimize the manufacturing process [7].

It is also used to predict 3-dimensional temperature field

in laser metal deposition process; here, the loss function is

constructed of residuals of heat conduction, convection and

radiation equation, and training step does not require any

labeled temperature data [8]. In Addition, to speed up compu-

tation time in calculating temperature profile of laser powder

bed fusion process, parametric PINNs are established; the

computation time of trained model is several orders of mag-

nitude shorter than finite element model [9].

PINNs can be extended to solve inverse problems, where

the objective is to infer underlying physical parameters or

sources from observed data. The ability of PINNs to provide

real-time predictions makes them suitable for monitoring and

controlling laser manufacturing processes. To predict temper-

ature change history and to find unknown material properties

and parameters of additivemanufacturing process, the thermal

measurement of infrared camera is combined with a PINNs

model; this hybrid model predicts accurately the unknowns
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and is capable to be used in real-time processes[10].

As it is evident, the application of physics-informed neural

networks in laser manufacturing is an exciting frontier that

combines the strengths of machine learning and physical

sciences. Therefore, in this research work, to show extra

the potential of physics-informed neural network in laser

manufacturing processes, the long-pulse laser drilling process

is chosen as the use case.

It is aimed to produce more accurate and physically con-

sistent predictions even with limited data by incorporating

physical laws into ANN. Our approach is structured as fol-

lows. The succeeding main section explains the structure

of physics-informed neural networks. Section 3 then intro-

duces the governing differential equation of long-pulse laser

drilling model. Section 4 demonstrates the programming tech-

nique and the methodology as well as operation of finding

and discovering solutions. Finally, Section 5 concludes the

outcomes.

2. Physics-Informed Neural Networks: PINNs

Physics-Informed Neural Networks, are constructed

through integrating physical laws, described by partial differ-

ential equations (PDEs), directly into the training process of

the neural networks. These equations constrain the training

process to ensure the neural network’s predictions adhere to

physical laws.

A typical PINNs architecture consists of a feedforward

artificial neural network with several layers and activation

functions, as shown in fig. 1. The input to the network can

include spatial coordinates (x) and time (t) while the output
represents the solution to the differential equation (up). The

governing equation and its initial and boundary conditions

are fpde(u, ux, uxx, ut) = f0 and fb(u, ux, uxx, ut) = f0,b,
respectively.

The derivatives of the solution i.e., ux,uxx, and ut are com-

puted by algorithmic differentiation (AD) technique which is

an automatic method for computing gradients of numerical

algorithms [11].

In this model, the loss function is augmented to include

terms that enforce the physical constraints. This typically

calculate mean squared errors (MSE) and involves data loss

MSEu and physical lossMSEf . The former measures the

error between the network’s predictions (up) and any avail-

able data points or observations (ut). The latter ensures the

network’s output satisfies the differential equations. This is

done by computing the residuals of the differential equations

(fpde and fb) using automatic differentiation and including

them in the loss function.

During training, the network adjusts its weights to mini-

mize the combined loss (data loss + physics loss), thus learn-

ing to produce solutions that are consistent with both the

observed data and the underlying physical laws

The depicted algorithm in fig. 1 conducts to data-driven

solution. However, the PINNs has more potentials. It can

be used to find unknown parameters of governing equations

as well, as shown in fig. 2. To do so, the network shall pre-

dict the solution of the differential equation as well as the

unknown parameters. This way of establish the algorithm

leads to data-driven discovery of PDEs. To find the unknown

parameters, one needs knowledge about ground truth values

x, t up

ux

uxx

ut

+

IBC

fpde(u, ux, uxx, ut) = f0

fb(u, ux, uxx, ut) = f0,b

ANN

MSE = MSEu +MSEf

Fig. 1 Typical physics-informed neural networks architec-

ture.

as well. This knowledge can be obtained from available ex-

perimental or numerical results to compare with the predicted

results. Afterwards, the loss function is constructed of two

mean squared errors, i.e., mean squared error of predictions

and the residual function.

x, t up

λ

ux

uxx

ut

+

IBC

fpde(u, ux, uxx, ut, λ) = f0

fb(u, ux, uxx, ut) = f0,b

ANN

MSE = MSEu +MSEf

Fig. 2 Customized physics-informed neural networks archi-

tecture.

This approach represents a powerful approach to solve

complex problems where traditional methods might struggle,

providing a bridge between machine learning and physical

sciences. A strong feature of this approach is that it requires

less observational data compared to purely data-drivenmodels

because the physical laws provide additional information.

3. Long-pulse laser drilling equation

When it comes to long-pulse laser drilling, the dominant

thermal process is melting and material is removed when

specific amount of energy is absorbed; this value is called

ablation intensity threshold [12]. By knowing the ablation in-

tensity threshold one can write an asymptotic time-dependent

equation to approximate the shape of drilling hole, as will be

explained in this section.

Assume that the laser beam is irradiated to the workpiece

surface with inclination angle θinc. If µ = cos(θinc) the
following relation should read to ablation take place:

µA(µ)I (x, z) = Ĩthr. (1)

Here, I (x, z) and A(µ) are power intensity distribution

and the absorption coefficient, respectively. By plotting the
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µA(µ), one can find out that this term can be approximate

with a linear relation Gµ [12]; G is a constant coefficient.

Through defining Ithr = Ĩthr/G and using the trigonometry

relation 1+tan(x)2 = 1
cos(x)2 , we approximate the inclination

of the drill wall as below:

dzr,l
dx

= ±

√(
I(x, zr,l)

Ithr

)2

− 1. (2)

For a specific ablation thickness (∆z), the next x-

coordinate of the wall is calculated, as:

xi = xi−1 +

(
dz

dx

)−1

∆z. (3)

The Gaussian distribution is assumed for the beam optical

intensity I(x, z):

I (x, z) = I0 ×
(

w0

w(z)

)2

× e

(
−2

(
x

w(z)

)2
)
, (4)

while beam caustic function is w (z) = w0

√
1 + ( z−z0

zR
)2.

The focal beam radius is w0. As it is seen, the spatial shape

of the beam is characterized by beam focal position z0 and
Rayleigh length zR, precisely, the propagation characteristic
length of the beam. The latter is described as bellow:

zR =
λ

π

F 2

K
. (5)

As shown, the Rayleigh length depends on the focal number

F =
zf
D and beam quality factorK = λ

π
1

θw0
. Here, D is the

illuminated diameter of the focusing lens with focal length zf
and θ = w0/zR is the far-field divergence angle of the beam.

If Pl is defined as laser beam pulse power, the amplitude

of optical intensity is calculated as below:

I0 = 2Pl/(πw
2
0). (6)

When the first-order differential equation (i.e., eq. (2)) is

solved for z, the (x, z) coordinate points of the borehole’s wall
are obtained. This numerical model needs to be calibrated

experimentally. Through calibration, the ablation intensity

threshold is varied until the calculated spatial shape of the

borehole fits the manufactured borehole.

Since, influences of complex phenomena while laser

drilling process, i.e., ionization, evaporation, melting, melt

flow, and condensation are approximated and summed up in

the threshold value, this model is called asymptotic thresh-

old model. For drilling through AISI 304 stainless steel, the

ablation threshold value is 2.25× 105J/m2.

4. Data exploration and exploitation via PINNs

As explained in section 2, the PINNs can help us in find-

ing data-driven solutions (data exploration) and data-driven

discovery (data exploitation) of PDEs. The former is solu-

tion of PDEs; for given fixed parameters and coefficients

of mathematical model, what can be the unknown state of

variables. On the other hand, the latter is learning the system

identification; the parameters and coefficients of the mathe-

matical model are unknown, what are acceptable values for

best describe the observed data.

In this study, a 3-layer artificial neural network with 30

neurons in each layer is employed, and the governing equation

is integrated into the loss function. To let this network to learn

and model complex relationships within the data, appropriate

non-linear activation function shall be introduced to it. In

fact, without non-linearity, a neural network with multiple

layers would be equivalent to a single-layer network, as the

composition of linear functions is itself a linear function.

Therefore, activation functions enable neural networks to

approximate complex function so that by applying non-linear

transformations at each layer, the network can learn and rep-

resent a wide variety of functions. Properly chosen activa-

tion function ensures gradients are not too large or too small,

which aids in effective training using gradient-based opti-

mization techniques like back propagation [13]. Here, the

tanh(x) = ex−e−x

ex+e−x function is used. It squashes input values

to a certain range (e.g.,-1 to 1) which helps in stabilizing the

learning process.

To train proposed PINNs, the gradient of the loss func-

tion shall be calculated; herein the algorithmic differentiation

aids by exploiting the chain rule of differential calculus [11].

In the present analysis, an ANN model is built through Ten-

sorFlow [14] which is a well-known open-source machine

learning platform. This platform benefits from the AD for

training ANNs which can compute the gradients of differen-

tiable expressions.

Adaptive moment estimation (Adam) [15] approach is the

optimization strategy, which is a gradient-based technique

and serves efficiently in training ANNs. It traces the gradient

of the entire training set downhill until it reaches the minimum

while the optimization procedure is controlled by learning

rate (α). The utilized momentum method is favored because

it directs faster the gradient downturn in the relevant direction

and lessens oscillations. In this study the learning rate is set

10−3.

Let’s start with finding data-driven solutions of eq. (2)

which is a nonlinear differential equation. Here, the goal is to

find the shape of drill hole by means of PINNs. Firstly, the

residual function shall be specified, which is as bellow for

left-side wall:

f (x, z) =
dzr,l
dx

+

√(
I (x, zr,l)

Ithr

)2

− 1. (7)

For a given Ithr and (x), an artificial neuronal network is
trained such that residual of governing equation is minimized

during training. The unknown variable is z positions of drill
wall for certain x. The derivative of z is calculated by means

of automatic differentiation. In the next step, this approxima-

tion is inserted to eq. (7) to obtain a physics-informed neural

network.

The data pipeline is depicted in fig. 3. The loss function

is the mean square error of residual function and the weights

and bias of ANN are modified in each epoch.

In fig. 4 the mean squared error of training is depicted;

after enough training epochs, it reaches 10−2 which is an
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x zp dz
dx + fode(

dzp

dx , zp, x, process parameters) = 0

ANN

MSE = MSEf

Fig. 3 Physics-informed neural networks architecture for find-

ing Physics-driven model solution.

acceptable value for the residual function.
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Fig. 4MSE of training. A [3×30] artificial neural network
with tanh activation function is employed. The training

learning rate is 10e-3.

The comparison between the predicted shape of drill wall

by PINNs model and outcomes of numerical solution, repre-

sents a very close results. This agreement is shown in fig. 5.

Here, the expected shape of drill wall is obtained by means

of numerical solution of eq. (2). This asymptotic model is

developed by [12]. To check the valiity and accuracy of the

model, he compared it with actual experimental data; athe

very good agreement between experimental and numerical

solution is observed.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
x [mm]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

z [
m

m
]

expected shap of drill wall
PINN prediction

Fig. 5 Comparison of predictions of PINN model and numer-

ical solution of laser borehole by eq. (7).

As said before, PINNs advantage is more evident when it

comes to data-driven discovery, that means finding unknown

coefficient or parameters in the equation. One can do several

experiments to learn the relations and fins the value, however,

wiser approach could be employing proposed method. Again,

we start with the residual function eq. (7). Given noisy in-

formation about measurements of drill hole shape, we aim to

approximate Ithr.

We approach the problem by approximating z(x) and Ithr
with a deep neural network. The data pipeline is shown fig. 6.

x zp

Ithr

dz
dx + fode(

dzp

dx , Ipthr, z
p, x, process parameters) = 0

ANN

MSE = MSEz +MSEf

Fig. 6 Physics-informed neural networks architecture for find-

ing data-driven discovery.

Here, in order to find out the unknown parameter we need

to have ground truth of z(x) as well. That means, one can use

available experimental or numerical results to compare with

the predicted results. Herein, the loss function is constructed

of two mean squared errors. They calculate the mean square

error of predicted z(x) and the residual function.

The predicted shape of drill wall via data-discovery PINNs

is depicted in fig. 7. Fortunately, the predicted values show

a very good agreement with expected shape achieved via

numerical simulation.
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Fig. 7 Comparison of predictions and numerical solution of

eq. (7) for the second PINNs model.

Last but not least, the predicted value for unknown param-

eter of model, i.e., Ithr, is depicted in fig. 8. Expected value
for Ithr is 2.25× 105 and as it is shown the predicted value is
2.2453× 105, that is a very acceptable prediction.

As it is seen, PINNs offer a versatile and robust framework

for integrating domain knowledge into machine learning mod-

els, significantly enhancing their predictive power and gener-

alization capabilities. This is what makes them an invaluable

tool for advancing scientific discovery and engineering inno-

vation.
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Fig. 8 Prediction of unknown parameter of eq. (7) via the

second PINNs model.

5. Conclusion

As shown, the application of physics-informed neural net-

works in laser manufacturing is an exciting frontier that com-

bines the strengths of machine learning and physical sciences.

It is seen that PINNs can help us in finding data-driven solu-

tions as well as data-driven discovery of nonlinear PDEs.

In this research work, the first proposed approach helps us

find the unknown state of variables of PDE, i.e., z-position of

drill wall, for given fixed parameters and coefficients of math-

ematical model. On the other hand, the second algorithm lets

us learn the system identification which is intensity threshold

value of laser ablation model as well as to predict shape of

drill wall. The predictions of both models show a very good

agreement with expected results.

It can be concluded that as research progresses, PINNs will

play a significant role in enhancing the efficiency, precision,

and capabilities of laser manufacturing processes, driving

innovations in manufacturing technologies.

It is worth to mention that while PINNs hold substantial

promise for advancing laser manufacturing technologies, sev-

eral challenges remain. These include the need for improved

methods to handle complex geometries, the integration of

multiple physical phenomena at different scales, and the de-

velopment of more efficient training algorithms to handle

the computational complexity of high-dimensional problems.

Therefore, our future research will focus on enhancing the

interpretability and robustness of PINNs, ensuring that they

can be reliably applied in real industrial settings.
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